a2 United States Patent

Chen et al.

US009218220B2

10) Patent No.: US 9,218,220 B2
(45) Date of Patent: *Dec. 22, 2015

(54)

(735)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

ELASTIC AND SCALABLE
PUBLISH/SUBSCRIBE SERVICE

Inventors: Han Chen, White Plains, NY (US);
Minkyong Kim, Scarsdale, NY (US);
Hui Lei, Scarsdale, NY (US); Ming Li,
Elmsford, NY (US); Fan Ye, Yorktown
Heights, NY (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 145 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/613,183
Filed: Sep. 13, 2012

Prior Publication Data

US 2013/0007131 Al Jan. 3, 2013

Related U.S. Application Data

Continuation of application No. 13/014,501, filed on
Jan. 26, 2011.

Int. Cl1.

GO6F 15/16 (2006.01)

GO6F 9/50 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC GO6F 9/5083 (2013.01); HO4L 67/26

(2013.01); HO4L 67/1008 (2013.01); HO4L
67/18 (2013.01)

(58) Field of Classification Search
CPC ... HO4L 65/403; HO4L 67/10; HO4L 67/22;

GO06Q 50/01
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
2003/0208539 Al* 11/2003 Gildenblat et al. 709/205
2004/0181588 Al* 9/2004 Wangetal. 709/207
2006/0059567 Al* 3/2006 Birdetal.cccceeee. 726/27
2008/0294644 Al* 112008 Liuetal.cccocovrnnenene. 707/10
2009/0112846 Al* 4/2009 Veeetal.cccoeverenenn. 707/5
2011/0208559 Al* 82011 Fontouraetal. ... 705/7.26
OTHER PUBLICATIONS

Montresor, Alberto. “Gossip Protocols for Large-Scale Distributed
Systems.” <Downloaded from http://sbrc2010.inf.ufgrs.br/re-
sources/presentations/tutorial/tutorial-montresor.pdf>, Oct. 23,
2006.*

Goswami et al., “Dynamic Load-Sharing using Predicted Process
Resource Requirements.” Jul. 1990.*

Baldoni, R., et al., “Modelling Publish/Subscribe Communication
Systems: Toward a Formal Approach”, Proceedings of the Eighth
IEEE International Workshop, Jan. 2003, pp. 1-8.

(Continued)

Primary Examiner — Scott B Christensen
(74) Attorney, Agent, or Firm — Tutunjian & Bitetto, P.C.;
Preston J. Young

(57) ABSTRACT

A system and method are disclosed for an elastic and scalable
publish/subscribe scheme. Subscription information is
received at a dispatcher node. A plurality of matching nodes
is selected in an overlay network to store the subscription
information on a computer readable storage medium. Upon
receiving an event at a dispatching node, at least one of the
matching nodes with the stored subscription information is
selected to process the event.

14 Claims, 6 Drawing Sheets

400

§

410

1 Subscriber sends a subscription to a dispatcher node

l

420 Dispatcher node selects at least one matching node for
1 storing the subscription (e.g., using a multi-dimensional

subscription space partitioning approach)

[

430 Dispatcher node forwards the subscription to the
"

selected matching node(s) for storage

440 Upon receiving an event, the matching node(s) compares
=" the event with the subscription to determine whether the

subscriber is interested in the event

|

450
N

Forwarding the event to the subscriber if the subscription
specifies that the subscriber is interested in the event

US 9,218,220 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Guo, X, et al.,, “A New Approach for Overload Management in
Content-Based Publish/Subscribe”, International Conference on
Software Engineering Advances, Aug. 2007, (6 pages).

Parzyjegla. H., et al., “Reconfiguring Publish/Subscribe Overlay
Topologies”, Proceedings of the 26th IEEE International Conference
on Distributed Computing Systems Workshops, Jul. 2006, (6 pages).
Zheng, X., et al., “PAT: A P2P Based Publish/Subscribe System for
QoS Information Dissemination of Web Services”, 2009 IEEE Inter-
national Conference on Web Services, Oct. 2009, pp. 839-846.

* cited by examiner

US 9,218,220 B2

Sheet 1 of 6

Dec. 22, 2015

U.S. Patent

Jsjuen ejeqg Jsjuen ejeqg
0sl

0sl
08l
S~ VT
08l
e Jayoledsiq Jayoledsiq ovl

ovl

\\./ \\/

Jaquosqnsg 4 Jaysiand Jaquosgnsg Jeysiignd
oLl och oLl 0zl

%, | 8Inbi4

US 9,218,220 B2

Sheet 2 of 6

Dec. 22, 2015

U.S. Patent

ooﬂ}//\ Jadisso9
$ ZS1 i
gy | epoN Buiyolepy)
0cl. agl . | mmrA (
] de|y JoA18S suonduosgng LGl
Jaddeussjoog T JOJIUOIN peoT] —
991 AepanQ doy-auQ | | suibug buiyoiep
V \1 A
I
ok ‘ evl
gy JouonEy JopJemio Joplemio Jo)oipaid peo —
gl w JusAd uonduosgng 1019809 PEO] Pl
vvv\/& 1 ovozgm£5mamﬁuﬂ /<\wvr
<o:

| \/“x

O
N

\L d8ysiignd %
0cl

Z 91nbi4

Jaquosgng

US 9,218,220 B2

Sheet 3 of 6

Dec. 22, 2015

U.S. Patent

av sz-0 paadg

4 ¥L — DL Spije |
0 zv- — 1v- spnybuo
e e ——

uondiosgns sjdwexs uy

¢ ainbi4

U.S. Patent Dec. 22, 2015 Sheet 4 of 6 US 9,218,220 B2

Figure 4

o

41\0/\ Subscriber sends a subscription to a dispatcher node

420 Dispatcher node selects at least one matching node for
1 storing the subscription (e.g., using a multi-dimensional
subscription space partitioning approach)

430 Dispatcher node forwards the subscription to the
selected matching node(s) for storage

440 Upon receiving an event, the matching node(s) compares
"\ the event with the subscription to determine whether the
subscriber is interested in the event

450 Forwarding the event to the subscriber if the subscription
specifies that the subscriber is interested in the event

U.S. Patent Dec. 22, 2015 Sheet 5 of 6 US 9,218,220 B2

Figure 5

N
o
(=]

Y

51\0/\ Publisher sends an event to a dispatcher node

Dispatcher node selects at least one matching node from

520 a plurality of candidate matching nodes for processing

the event (e.g., using a performance-oriented event
forwarding approach)

530
«_—Forwarding the event to to the selected matching node(s)

540 Comparing the event with the subscriptions stored at the
N selected matching node(s) to determine which
subscribers are to receive the event

55\0/\ Forwarding the event to the subscribers that have
specified an interest in the event

U.S. Patent

Dec. 22, 2015 Sheet 6 of 6

US 9,218,220 B2

Figure 6

(o2
o
o

Receiving a subscription at a
dispatcher node from a
subscriber

SN

|

Forwarding the event to
the chosen matching node

Selecting a plurality of
matching nodes in an overlay
network to store the
subscription

(
670

h 4

4

Forwarding the subscription to
the selected matching nodes
for storage

v

| Storing the subscription at the

selected matching nodes

Comparing at least one
attribute associated with
the event with subscription
information stored at the
chosen matching node to
determine whether any
subscriber has specified
an interest in the event

4

)

7
/
(\

680

Receiving an event at a
dispatcher node from a
publisher

v

Providing the event to any
subscriber who has
specified an interest in the
event

Choosing one of the matching
nodes that stores the
subscription to process the
event

)
./
/

(\

690

US 9,218,220 B2

1
ELASTIC AND SCALABLE
PUBLISH/SUBSCRIBE SERVICE

RELATED APPLICATION DATA

This application is a Continuation application of co-pend-
ing U.S. patent application Ser. No. 13/014,501 filed on Jan.
26, 2011, incorporated herein by reference in its entirety.

BACKGROUND

1. Technical Field

The present invention relates to an asynchronous messag-
ing paradigm, and more particularly, to an attribute-based
publish/subscribe paradigm which quickly scales in accor-
dance with the number of consumers and producers.

2. Description of the Related Art

Publish/subscribe (pub/sub) schemes employ an asynchro-
nous communication pattern for communication among
application components. Publishers and subscribers of mes-
sages are decoupled from each other and interact through an
intermediary—i.e., a pub/sub system. A subscriber registers
its interest in certain kinds of messages with the pub/sub
system in the form of a subscription. Publishers post mes-
sages to the pub/sub system. The system matches messages
(e.g., publications) to subscriptions and delivers messages to
interested subscribers.

Conventional pub/sub systems are based on either a cen-
tralized model or a peer-to-peer model. With the centralized
model, publishers and subscribers select a single server and
directly connect to that server. A centralized pub/sub system
does not provide for adequate scaling because they are con-
figured as a full mesh topology in which subscriptions and
events are replicated on each server. Moreover, these central-
ized systems require heavy administration to handle highly
dynamic workloads, and only provide limited tolerance in the
case of a data center failure.

In the peer-to-peer model, the publishers and subscribers
serve as the pub/sub servers. Each node is responsible for a
particular subset of subscriptions and events. As a result,
heavily loaded servers exist due to uneven distribution of
subscriptions and events. While load balancing mechanisms
may be implemented to provide a more even distribution,
such load balancing mechanisms tend to be very complex and
result in other performance penalties.

Neither the centralized model, nor the peer-to-peer model,
is suited to handle constraints imposed by recent trends asso-
ciated with cloud computing and sense-and-response appli-
cations. Sense-and-respond applications relate to applica-
tions which adapt their behavior to events in either the cyber
world or real world, based on continuous readings from
potentially large numbers of physical or logical sensors.
Cloud computing typically involves a computing environ-
ment in which shared resources, software or information is
provided to computers or other devices on-demand over the
Internet. Conventional pub/sub systems are not configured to
meet the requirements imposed by cloud computing and
sense-and response applications.

SUMMARY

In accordance with the present principles, a method is
disclosed for an elastic and scalable publish/subscribe sys-
tem. Subscription information is received at a dispatcher
node. A plurality of matching nodes is selected in an overlay
network to store the subscription information on a computer
readable storage medium. Upon receiving an event at a dis-

10

20

30

40

45

60

2

patching node, at least one of the matching nodes with the
stored subscription information is selected to process the
event.

In accordance with the present principles, a system is dis-
closed for an elastic and scalable publish/subscribe system.
The system includes a plurality of matching nodes forming an
overlay network, wherein the matching nodes are configured
to match events to subscription information stored on a com-
puter-readable storage medium at the matching nodes. The
system further includes at least one dispatcher node config-
ured to forward subscription information and events received
at the at least one dispatcher node to at least one of the
matching nodes in a single hop.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 is a block/flow diagram illustrating an exemplary
publish/subscribe messaging system in accordance with the
present principles.

FIG. 2 is a block/flow diagram illustrating a more detailed
view of the publish/subscribe messaging system of FIG. 1.

FIG. 3 is a diagram illustrating an exemplary manner for
assigning a multi-attribute subscription to a plurality of
matching servers using a multi-dimensional subscription
space partitioning technique.

FIG. 4 is a block/flow diagram illustrating an exemplary
method for processing a subscription.

FIG. 5 is a block/flow diagram illustrating an exemplary
method for processing an event.

FIG. 6 is a block/flow diagram illustrating an exemplary
method for operating a publish/subscribe messaging system
in accordance with the present principles.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

In accordance with the present principles, a two-tier attrib-
uted-based publish/subscribe (pub/sub) system is disclosed
which can handle large amounts of data from sense-and-
respond applications and which is optimized for implemen-
tation in a cloud environment. The pub/sub system disclosed
herein includes two tiers of nodes, dispatcher nodes and
matching nodes, organized into a one-hop overlay network.

In the first tier, dispatcher nodes receive events from the
publishers and subscription information from subscribers.
The dispatcher nodes select at least one of the matching nodes
in the second tier to receive and process the data originating
from subscribers and publishers. More specifically, the dis-
patcher node determines which matching nodes are to store
the subscription information provided by the subscribers, and
which matching nodes are to receive the events provided by a
publisher for matching against the subscriptions. The data
provided by the subscribers and publishers traverses a single
hop at most from a dispatcher node to a matching node before
being matched. In this one-hop overlay configuration, the
dispatcher nodes serve as anintermediary between the match-
ing nodes and the clients (i.e., the publishers and subscribers).

The matching nodes are responsible for matching pub-
lished events against the subscription information specified
by the subscribers, and determining which subscribers are to

US 9,218,220 B2

3

receive each of the published events. Based on the matching
results, events may be forwarded to subscribers by either a
dispatcher node or a matching node.

Each node in this one-hop overlay network knows the
liveliness (e.g., whether a node has failed or is available) and
contact information (e.g., IP address or port) of all the other
nodes in the network. This can be implemented using a gos-
siping protocol according to which each node periodically
exchanges information with a few randomly selected nodes.
The gossiping protocol propagates a state change throughout
the entire network within a predetermined number of itera-
tions.

Many emerging “smart applications” or “smart systems”
are currently being developed which require publish/sub-
scribe systems that can handle enormous amounts of data
originating from large numbers of publishers and subscribers
that are distributed throughout large geographical areas. For
example, a smart transportation application may provide real
time traffic information for drivers using sensors (e.g., cam-
eras, cell phones, loop detectors, etc.) that publish traffic data
in real time, or a smart healthcare application may provide for
patient monitoring using sensors to monitor a patients heart-
beat, breathing or other bodily function. Other examples may
include a smart application that is employed to conserve
energy consumption in a building (e.g., using sensors to
monitor temperature distribution in a building and to control
air conditioning and/or heating units based on this informa-
tion), or a smart power grid application which monitors and
controls power distribution over a large geographic based on
sensors which provide information such as power demand,
price, power capacity, etc.

With these smart applications, the publishers may repre-
sent sense-and-response devices, such as mobile devices,
cameras or other sensors, which continuously generate large
amounts of data in real time. The subscribers may represent
people, devices or information technology (IT) systems,
which usually have quite specific interests in the types of data
they want to receive. Conventional publish/subscribe sys-
tems, based on either the centralized or peer-to-peer models,
are not suited to handle the large population of subscribers
and publishers, the large volume of data, or the continuously
changing interests of subscribers associated with these smart
applications and systems.

However, the publish/subscribe paradigm disclosed herein
is able to satisfy the heavy demands imposed by these smart
applications by providing a system which quickly scales to
potentially millions of publishers and subscribers, which sup-
ports accurate content filtering, and which provides the elas-
ticity to quickly adapt to dramatic changes in the client popu-
lation, data amount and/or subscriber interests.

The publish/subscribe model disclosed herein is able to
handle the heavy demands imposed by these smart applica-
tions for several reasons. These include the following. Clients
are not directly coupled to a single, fixed publish/subscribe
server. Rather, the system selects the servers which are to
receive the subscriptions and events. This results in a more
elastic system which is readily available to clients. In addi-
tion, the present publish/subscribe system concurrently
assigns subscriptions and events to a plurality of attributes
stored on the pub/sub servers, thus preventing servers from
becoming too heavily loaded using any single attribute.
Moreover, assigning data to attributes in this manner permits
the system to scale easily and quickly in accordance with
current demands imposed by publishers and subscribers.

Further advantages stem from the fact that the present
system is configured to provide “performance-aware” event
forwarding to select the server with the best performance for

10

15

20

25

30

35

40

45

50

55

60

65

4

handing a particular event. Optimizing the selection of serv-
ers in this manner provides for better load balancing between
servers and improves overall performance of the system.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

US 9,218,220 B2

5

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

Referring now to the drawings in which like numerals
represent the same or similar elements and initially to FIG. 1,
a block/flow diagram illustratively depicts a publisher/sub-
scriber (pub/sub) messaging system 100 in accordance with
the present principles. As shown therein, subscribers 110 and
publishers 120 are in communication with, and transmit data
to, the dispatcher nodes 140.

A publisher may represent a person, computing device,
application (e.g., sense-and-response application), sensor,
organization or other entity that posts an event to the publish/
subscribe system 100. The terms “event” and “message”,
which are used interchangeably herein, refer to any sort of
data (e.g., text, images, messages, videos, publications, etc.)
which is provided to the publish/subscribe system 100 from a

30

40

45

60

6

publisher 120. Events may be viewed by any subscriber 110
who has specified an interest in such events. Events may be
annotated with attributes or metadata which describe the con-
tents, topic, or subject of the events.

A subscriber 110 may represent a person, computing
device, application, organization or other entity which views
events posted to the publish/subscribe system 100. Subscrib-
ers 110 transmit subscription information which indicates the
particular types of messages or events that the subscriber 110
would like to receive from the publish/subscribe system 100.
The subscription information may directly identify events to
be provided to the subscriber 110. Alternatively, subscription
information may be expressed indirectly as a query on a
database, or as a predicate on the attributes or content of an
event.

For example, subscription information for a traffic conges-
tion publish/subscribe application may be expressed as
[-41=long<-42]"[70=lat<74]"[0<s<25], where “long” refers
to longitude, “lat” refers to latitude, and “s” refers to speed.
This exemplary query may be translated into a subscription
which indicates that the driver wants to receive messages
where vehicle speed is in the range 0 0-25 miles per hour, and
vehicle location is in a rectangular area within a longitudinal
range of —41° to —42° and latitudinal range of —=70° to -74°.

The publish/subscribe system 100 includes a plurality of
data centers 180 which comprise both dispatcher nodes 140
and matching nodes 150. The dispatcher nodes 140 and
matching nodes 150 may represent computing servers, or
may be implemented as software modules. The dispatcher
nodes 140 forward the data (i.e., the events and subscription
information) from the publishers and subscribers to one or
more of the matching nodes 150. The matching nodes 150
execute a matching procedure to determine which events are
to be transmitted to subscribers 110. In preferred embodi-
ments, the pub/sub system 100 is an attribute-based pub/sub
system. Thus, the matching procedure executed by the match-
ing nodes 150 may involve comparing the metadata or
attributes associated with an event to the subscription infor-
mation provided by the subscribers 110 to determine which
events are to be sent to each of the subscribers 110.

Once it is determined that a subscriber 110 is to receive a
particular event, the event is forwarded to the subscriber 110.
The delivery of messages to subscribers can be direct or
indirect. A matching node 150 can send messages directly to
matching subscribers 110 who listen and wait for incoming
connections or messages. Otherwise, messages can be deliv-
ered indirectly.

In the indirect approach, a dispatcher node 140 returns a
handle to some temporary storage (e.g., a message queue)
after receiving subscription information from a subscriber
110. The subscriber 110 periodically polls the storage device
at the dispatching node 140 to retrieve matching messages.
Thus, the matching nodes 150 only deliver messages to the
temporary storage of the dispatching node 140. This delivery
model is suitable for subscribers 110 that employ mobile
devices (e.g., cell phones, laptops, personal digital assistants,
etc.) which may not be able to listen and wait for incoming
messages.

Itshould be understood that the system 100 in FIG. 1 can be
altered in a variety of different ways while staying within the
scope of the present principles. For example, the number of
data centers 180 may be varied, as well as the number of
dispatching nodes 140 and matching nodes 150 at each data
center 180. Likewise, the number of subscribers 110 and
publishers 120 that communicate with each dispatching node
140 may also be varied. In addition, although the dispatching
nodes 140 are depicted as separate and distinct server devices

US 9,218,220 B2

7

from the matching nodes 140, in certain embodiments the
dispatching nodes 140 and matching nodes 150 may com-
prise software components which are stored on a single
server.

Moving on to FIG. 2, a block/flow diagram provides amore
detailed description of an illustrative publish/subscribe sys-
tem 200 in accordance with the present principles. A dis-
patcher node 140 includes a load collector 141 which peri-
odically pulls information from the load monitors 151 on
each ofthe matching nodes 150. The information provided by
the load monitor 151 can be used to track the current load on
a matching node 150. For example, the information may
indicate the number of subscriptions stored on a matching
node 150, the size or number of events which are queued at a
particular matching node 150 for processing at a later time,
the availability of resources (e.g., processor or memory) at a
matching node, and/or other similarly related data. By pulling
this information from each of the nodes, the load collector
141 permits the dispatching node 140 to identify and deter-
mine the loads on each of the matching nodes 150.

The load collector 141 may include a load predictor 142.
The load predictor 142 can be used to predict the response
times for each of the matching node(s) 150. For example, the
load predictor may predict the total time that it will take for a
matching node 150 to process a particular event (i.e., the time
from when an event is forwarded to matching node to the time
that the event is forwarded to subscribers that have specified
an interest in the event). The load predictor 142 can make this
prediction using the information that was pulled from the load
monitors 151 at the matching nodes 150.

The dispatcher node 140 also includes a subscription for-
warder 143 which receives subscription information from a
subscriber 110 and selects one or more matching nodes 150
for storing the subscription information. The decision as to
where the subscription information is to be stored may be
based, at least in part, on the information gather by the load
collector 141. In preferred embodiments, the subscription
forwarder 143 employs a “multi-dimensional subscription
space partitioning” technique to select the matching nodes
150 that will store the subscription information.

This technique divides the entire subscription space among
the matching nodes 150 such that each matching node 150
only handles a small subset of all of the subscriptions, thus
reducing the number of subscriptions that a matching node
has to search through. When a subscription includes several
attributes (also referred herein as “dimensions™), each
attribute is partitioned into a plurality of sections, and a single
server is responsible for a particular section or range of each
dimension. Hence, each subscription is assigned to a plurality
of' matching nodes 150 such that for each event received from
apublisher 120, multiple candidate matching nodes 150 exist
which can finish the matching process without involving
other matching nodes 150.

The above subscription space partitioning technique
implicitly replicates subscriptions across multiple servers,
and provides a high probability that at least two servers are in
different data centers. This provides for a naturally resilient
system which can endure even despite failures of entire data
centers. However, to ensure resiliency of data, additional
measures may be included to ensure that data is replicated
across at least two data centers.

FIG. 3 is a diagram 300 illustrating how the multi-dimen-
sional subscription space partitioning approach described
above can be applied to subscription information originating
from a traffic monitoring application. As shown therein, the
data from the application comprises three dimensions or
attributes, i.e., longitude, latitude and speed. Each ofthe three

10

15

20

25

30

35

40

45

50

55

60

65

8

searchable dimensions are split into six segments and each
segment is associated with one of the matching nodes labeled
A-F . Since all segments along each dimension cover the
whole possible value space, a predicate range in the subscrip-
tion information has to overlap with at least one segment and
the subscription information is assigned to at least one match-
ing node in each dimension.

In this example, the value of the longitude attribute is in the
range of —-41°to —42°, the value of the latitude attribute is in
the range of 70°-74°, and the value of the speed attribute is in
the range of 0-25 mile per hour. Thus, the subscription is
assigned to matching node F based on the latitude attribute,
matching node C based on the longitude attribute, and match-
ing nodes A and B based on the speed attribute. Each of these
matching nodes stores the entirety of the subscription and has
the ability to match the subscription with an incoming event
without the assistance of the other matching nodes.

Real world data distribution is rarely uniform. The popular
“20-80” rule states that 80% of events come from 20% of
causes. Similar skewness is expected in the distribution of
predicate ranges along some dimensions in a publish/sub-
scribe system. Hence, some matching nodes 150 are assigned
disproportionately more or less subscriptions along these
dimensions (which may be referred to as “hot spots” or “cold
spots” respectively), and, as a result, these matching nodes
need to search through a significantly increased or decreased
number of subscriptions than the average matching node.

The multi-dimensional subscription space partitioning
approach can eliminate or mitigate the above problems asso-
ciated with data skewness. Since k candidate matchers exist
for each message along k dimensions, it is unlikely that every
candidate is on the corresponding dimension’s “hot spots™. In
fact, there is a higher probability that some of them will be on
“cold spots”. The present publish/subscribe system actively
chooses matching nodes 150 which are located on “cold
spots” to improve the performance of the system.

In addition to the advantages described above, the multi-
dimensional subscription space partitioning technique is ben-
eficial because the technique permits multiple indexes to be
maintained throughout the system at very low cost. Moreover,
the technique provides a large amount of freedom to the event
forwarder 144 when determining where to forward events
received from publishers 120.

Returning to FIG. 2, the dispatcher node 140 also includes
an event forwarder 144. The event forwarder 144 receives
events from publishers 120 and selects at least one matching
node 150 which will be responsible for matching the event to
the subscription information stored at the matching nodes
150. The event forwarder 144 may initially determine a subset
of candidates nodes for receiving an event based on the
attribute values of the event.

For example, given an incoming event, a dispatcher node
140 can find which attribute segments include the attribute
values of the event. From the segment assignment informa-
tion which is gossiped and known by all dispatcher nodes 140,
the dispatcher nodes 140 can determine the matching nodes
150 which are responsible for those attribute segments. Then,
the matching nodes 150 which are responsible for storing the
subscriptions that have attribute value ranges overlapping
with the attribute segments are identified as candidates for
processing the event.

Hence, an event may have multiple attributes associated
with it, and each attribute can be assigned to a plurality of
matching nodes 150 which are each responsible for a value
range associated with each attribute. Because each of these
candidate matching node 150 stores subscriptions in their
entirety, each of the matching nodes 150 can determine which

US 9,218,220 B2

9

subscriptions match an incoming event. Using the above
example with reference to FIG. 3, an event of (40, -20, 35)
would have candidate matchers E, C, B since these matching
nodes are responsible for segments (30, 60), (=60, 0) and (20,
40), respectively.

In preferred embodiments, the event forwarder 144
employs a “performance oriented event forwarding” tech-
nique to select at least one of the candidate matching nodes
150 to receive a given event. This technique ensures that an
event is sent to the least loaded candidate server for process-
ing, thus providing low latency and high throughput. The
selection of a candidate node may be based on information
gathered from the load collector 141 and/or predictions made
by the load predictor 142. For example, this information may
be used to select the matching node 150 with the least number
of subscriptions, or with the lowest average response time.
However, in preferred embodiments, the event forwarder 144
selects the matching node 150 with the lowest predicted
response time (i.e., the time between when an event is
received by a matching node and the time when the event is
forwarded to the subscribers). This prediction accounts for
the duration that an event will be queued at the matching node
150 (the more events in the queue, the longer the response
time will be), and the time it takes to match events to corre-
sponding subscriptions (the more selective the matching cri-
teria is, the lower the matching time).

An event which is forwarded to a selected matching node
150 is processed by the matching engine 152 to determine
which subscribers 110 are to receive the event. This may be
performed using the subscription information stored in a sub-
scription database 153 at the matching node 150. The sub-
scription information stored in the subscription database 153
includes any subscription information which was forwarded
to the matching node by the subscription forwarders 143. This
information may comprise queries, or other data which indi-
cates the events that a subscriber wishes to receive, for a
plurality of subscribers 110. Upon identitying the subscribers
110 that are to receive a given event, the event may be for-
warded to the subscribers 110 using one of the direct or
indirect approaches described above.

The partitioner 145 is used by the dispatcher nodes 140 to
add or remove nodes from the network. The decision to add or
remove nodes from the network may be based on information
gathered by the load collector 141 or data propagated through
the network via the gossiper 160. For example, additional
matching nodes 150 may be added if the load collector 141
determines that the load on a matching node 150 is too great,
and that it would be better to split the load with another newly
added matching node 150. In this case, each of its segments
assigned to the matching node 150 may be divided into two
smaller segments, and one half of these segments may be
assigned a newly joining matching node 150. Similarly, the
partitioner 145 may be responsible for removing matching
nodes in the case of a node failure, or if it is determined that
the efficiency of the system can be improved by combining
the loads of two different nodes.

A bootstrapper 156 is used to initialize a new matching
node 150 that is being added to the cloud. As explained above,
a multi-dimensional subscription space partitioning tech-
nique may be employed to map an attribute across multiple
matching nodes 150 by assigning each matching node 150 to
a particular range associated with an attribute. Thus, when
initializing a new node, the bootstrapper 156 may be respon-
sible for assigning the node to a particular range associated
with a dimension or attribute of a subscription.

A one-hop overlay 154 module allows each matching node
150 to maintain a global view of all the nodes in the cloud

10

15

20

25

30

35

40

45

50

55

60

65

10

environment. Each matching node 150 maintains a table
which includes an entry for each matching node 150 in the
network. Each entry corresponds to information for a particu-
lar matching node 150 and includes the contact information
(e.g., IP address or port), the segment boundaries (one seg-
ment on each dimension assigned to each matching node),
and a timestamp (which indicates the last time the matching
node 150 updated its network information) associated with
the particular matching node 150. This information may be
stored as a server map 155 at the one-hop overlay 154 module.

When the state of a matching node 150 changes (e.g., when
a node joins or leaves the cloud, when a range assigned to a
node changes, when a new attribute is assigned to a node,
when the address of node changes, etc.), the node may update
its local information stored in the one-hop overlay 154 mod-
ule and propagate the changes throughout the network via the
gossiper 160. In addition, a dispatcher node 140 may periodi-
cally pull the contact and segment information stored in the
one-hop overlay 154 from a randomly selected matching
node 150.

The gossiper 160 employs a gossiping protocol which
informs each node of the liveliness, contact information (e.g.,
ports, IP addresses, etc.) and load information of all other
nodes. Hence, the gossiping protocol can also be used to
propagate state changes throughout a network and to deter-
mine whether certain nodes, or data centers, have failed.

Each node periodically updates its own entry stored in the
server map 155 and exchanges information with log(N) (N is
the total number of matching nodes 150) number of matching
nodes 150 using the gossiper 160. After a few rounds of such
exchange, every matching node 150 is guaranteed to receive
updated information about all other nodes in the network. If
multiple state changes for a single matching node 150 are
being propagated throughout the network simultaneously, the
one with the latest timestamp is chosen to update the infor-
mation at the matching nodes 150.

Transmitting state changes throughout a network using the
gossiper 160 is advantageous because its effects on network
delay are negligible and it can be implemented with very little
overhead. Moreover, it also tolerates node or network failures
due to the random selection of nodes to gossip with.

While the gossiper 160 may be advantageously employed
to provide certain types of updated information, it may be
preferred to push data to nodes in certain scenarios. For
example, matching nodes 150 may periodically push
dynamic workload information to dispatcher nodes 140. This
avoids the latency associated with gossiping data, which is
more appropriately used for slow-changing information such
as segment assignment, rather than faster, more dynamic
workload information.

For example, each matching node 150 may periodically
calculate its own arrival rate ', matching rate W', and the
queue length g’ for each dimension assigned to the matching
node 150. If any of these variables exceed a predetermined
threshold (e.g., 10%), the matching node 150 may be config-
ured to push the updated information to all dispatching nodes
140. Such information is not propagated using the gossiper
160 because this type of information changes more fre-
quently.

The matching nodes 150 may push updated information to
nodes 140 in other circumstances as well. For example, a
matching node 150 which is being added to the system may
contact one or more of the dispatcher nodes 150. Based on the
workloads of the matching nodes 150, the dispatcher node
140 may select a heavily loaded matching node 150 whose
workload should be split with the newly added matching node

US 9,218,220 B2

11

150. In this case, the heavily loaded matching node may push
the portion of the subscription load that to the new matching
node 150.

Moving on to FIG. 4, a block/flow diagram illustrates an
exemplary method 400 for processing a subscription. Inblock
410, a subscriber sends a subscription to a dispatcher node
140. The subscription may specifically identify certain
attributes that the subscriber 110 has an interest in, or alter-
natively, may represent a query or other information which
can be used deduce the events which are to be sent to the
subscriber 110.

Upon receiving the subscription, the dispatcher node 140
selects at least one matching node from an overlay network to
store the subscription (block 420). In preferred embodiments,
the dispatcher node 140 employs the multi-dimensional sub-
scription space partitioning approach described above to
select a plurality of matching nodes 150 for storing the sub-
scription. The subscription is forwarded to the selected
matching nodes for storage in block 430.

When an event is forwarded to one of the matching nodes
150 which stores the subscription, the matching node 150
compares the event (or attributes associated with the event)
with the subscription to determine whether the subscription
specifies the subscriber’s interest in the event (block 440). If
the comparison of the event with the subscription indicates
that a subscriber 110 is interested in the event, the event is
forwarded to the subscriber 110 in block 450.

FIG. 5 is a block/flow diagram illustrating an exemplary
method 500 for processing an event. The method begins in
block 510 where a publisher 120 sends an event to a dis-
patcher node 140. Upon reception of the event, the dispatcher
node 140 selects at least one matching node from a plurality
of candidate matching nodes 150 for processing the event
(block 520). The event traverses a single hop at most from a
dispatcher node to a matching node before being matched.
Not all matching nodes 150 are candidate matching nodes
150. Rather, the candidate matching nodes 150 represent
those matching nodes 150 which store the subscription infor-
mation needed to process the event.

As explained above, a dispatcher node 140 determines
which attribute segments include the attribute values of an
incoming event. Using the segment assignment information,
the dispatcher nodes 140 can then determine which matching
nodes 150 are responsible for those attribute segments. The
matching nodes 150 which are responsible for storing the
subscriptions with attribute value ranges overlapping with
those segments comprise a set of candidate matching nodes
150, and one of the candidate matching nodes 150 is selected
for processing the event.

As mentioned above, the dispatcher node 140 may use a
performance-oriented event forwarding approach to select
the matching node 150. The performance-oriented event for-
warding technique may select the matching node 150 using
different policies. According to a first policy, the candidate
matching node 150 with the least number of subscriptions is
selected. According to a second policy, the average response
time (i.e., where “response time” refers to the time between
receiving an event at a matching node 150 and the time it takes
to forward the event to subscribers 110) is calculated for all
candidate nodes, and the candidate now with the lowest aver-
age response time is selected.

According to a third and preferred policy, a predicted
response time is calculated for each candidate matching node
150, and the candidate with the lowest predicted matching
time is selected. This adaptive policy works as follows. For
each dimension L,, a matching node 150 monitors the mes-
sage queue length ¢’ and periodically calculates the average

10

15

20

25

30

35

40

45

50

55

60

65

12

message arrival rate A’ and matching rate u’ of the past w
seconds. The matching node 150 then sends, A’, i’ and q' to all
dispatcher nodes 140. One or more of the dispatcher nodes
140 estimate the processing time along each dimension for
the corresponding candidate matching nodes 150, and the
message is forwarded to the matching node 150 with the
shortest estimated processing time.

The estimation is based on a linear interpolation between
two consecutive up-dates, assuming that the message arrival
and matching rates remain relatively constant between
updates. For example, suppose at last update time t', the queue
length on a matcher for dimension L, was q,/, the message
arrival rate was A/, and the message matching rate was ..
The queue length at time t is then calculated as q,/=q,/+(A,/ -
wH(t=t", where (A, —p,)(t—t") is the number of messages that
have arrived but are not processed since t'. The time it takes to
process the next message is (q,/+1)/u,/, where q,/u,’ is the
queuing time and 1/p,/ is the matching time. The estimation
between two consecutive updates is preferably performed
under high message rates since the queuing time can change
drastically in the interim period.

Regardless of the particular policy that is employed to
select a matching node 150 in block 520, the event is for-
warded to the selected matching node 150 in block 530. The
matching node 150 which receives the event compares the
event (or attributes associated with the event) to the subscrip-
tions stored locally at the node to determine which subscrib-
ers 110 are to receive the event (block 540). In block 550, the
event is forwarded to any subscribers that have specified an
interest in the event via a subscription.

FIG. 6 is a block/flow diagram illustrating an exemplary
method 600 for operating a publish/subscribe messaging sys-
tem in accordance with the present principles. The method
begins in block 610 where a dispatcher node 140 receives a
subscription from a subscriber 110.

Next, in block 620, the dispatcher node 140 selects a plu-
rality of matching nodes 150 in an overlay network to store
the subscription. This may involve application of the multi-
dimensional subscription space partitioning technique
described above. The subscription is then forwarded to the
selected matching nodes 150 (block 630), and the selected
matching nodes each store the subscription locally (block
640).

At some later point in time, an event may be posted by a
publisher 120 and received at a dispatcher node (block 650).
The dispatching node selects one of a plurality of candidate
matching nodes 150 to process the event (block 660). The
candidate matching nodes represent those matching nodes
150 that were selected for storing the subscription in block
620.

The selected matching node 150 is forwarded the event in
block 670. The selected matching node 150 compares the
event (or at least one attribute associated with the event) with
the subscription information stored locally at the matching
node to determine whether any subscribers have specified an
interest in the event (block 680). The event is then forwarded
to any subscriber 110 which has specified an interest in the
event in block 690.

Having described preferred embodiments for an elastic and
scalable publish/subscribe system and method (which are
intended to be illustrative and not limiting), it is noted that
modifications and variations can be made by persons skilled
in the art in light of the above teachings. It is therefore to be
understood that changes may be made in the particular
embodiments disclosed which are within the scope of the
invention as outlined by the appended claims. Having thus
described aspects of the invention, with the details and par-

US 9,218,220 B2

13

ticularity required by the patent laws, what is claimed and
desired protected by Letters Patent is set forth in the appended
claims.

What is claimed is:

1. A publish/subscribe system, comprising:

a plurality of matching nodes forming an overlay network,
wherein the matching nodes are configured to match
events to subscription information stored on a computer-
readable storage medium at each of said matching
nodes; and

at least one dispatcher node comprising:

a processor configured to forward subscription informa-
tion and events received at the at least one dispatcher
node to at least one of the matching nodes based on the
matching node being a single hop from the at least one
dispatcher node;

a load collector configured to periodically receive load
information from the plurality of matching nodes; and

a partitioner configured to add and/or remove matching
nodes from the overlay network based on the load
information.

2. The system of claim 1, wherein the at least one dis-
patcher node comprises a subscription forwarder configured
to select a plurality of matching nodes for storing received
subscription information.

3. The system of claim 2, wherein the subscription for-
warder employs a multi-dimensional subscription space par-
titioning technique which partitions each attribute associated
with a subscription into a plurality of subscription space
segments, and assigns each subscription space segment to a
different matching node.

4. The system of claim 1, wherein the at least one dis-
patcher node comprises an event forwarder configured to
select at least one matching node to process an event received
at the at least one dispatcher node.

5. The system of claim 4, wherein the event forwarder
selects the at least one matching node with a lowest predicted
response time to execute a matching procedure to determine
which events are to be transmitted to subscribers.

6. The system of claim 5, wherein the lowest predicted
response time is computed based on at least one of: length of
an event queue, message rate or match rate.

7. The system of claim 1, further comprising a gossiper
configured to periodically transmit data associated with a
matching node to a predetermined number of randomly
selected matching nodes.

8. The system of claim 7, wherein the data indicates a
liveliness value, contact information and load information
associated with a matching node.

9. A non-transitory computer readable storage medium
comprising a computer readable program, wherein the com-
puter readable program when executed on a computer causes
the computer to perform the steps of:

receiving, by a dispatching node, subscription information
at a dispatching node;

selecting, by the dispatching node, a plurality of matching
nodes in an overlay network to store the subscription
information on a computer readable storage medium at

10

15

20

25

30

40

45

50

55

14

each of the plurality of matching nodes based on each of
the plurality of matching nodes being a single hop from
the dispatching node;

receiving an event at a dispatching node;

selecting at least one of the matching nodes with the stored

subscription information to process the event;
periodically receiving, by the dispatching node, load infor-
mation from each of the matching nodes; and

adding or removing, by the dispatching node, matching

nodes from the overlay network, based on the load infor-
mation.

10. A non-transitory computer readable storage medium
comprising a computer readable program, wherein the com-
puter readable program when executed on a computer causes
the computer to perform the steps of:

receiving, by a dispatching node, subscription information

at a dispatching node;

selecting, by the dispatching node, a plurality of matching

nodes in an overlay network to store the subscription
information on a computer readable storage medium at
each of the plurality of matching nodes based on each of
the plurality of matching nodes being a single hop from
the dispatching node;

receiving an event at a dispatching node;

selecting the matching node with a lowest predicted

response time to execute a matching procedure for deter-
mining which events are to be transmitted to subscribers;
periodically transmitting data associated with a matching
node to a predetermined number of randomly selected
matching nodes using a gossiping protocol;
periodically receiving, by the dispatching node, load infor-
mation from each of the matching nodes; and
adding or removing, by the dispatching node, matching
nodes from the overlay network, based on the load infor-
mation.

11. The non-transitory computer readable storage medium
of claim 10, wherein selecting a plurality of matching nodes
in an overlay network to store the subscription information
includes applying a multi-dimensional subscription space
partitioning technique to partition each attribute associated
with the subscription information into a plurality of subscrip-
tion space segments.

12. The non-transitory computer readable storage medium
of claim 11, further comprising assigning an entirety of the
subscription to different matching nodes which are each
responsible for at least one of the subscription space seg-
ments.

13. The non-transitory computer readable storage medium
of claim 11, further comprising identifying the subscription
space segments that are associated with attribute values of an
incoming event using information propagated through gos-
siping, and identifying a set of candidate matching nodes
responsible for the identified subscriptions space segments.

14. The non-transitory computer readable storage medium
of claim 10, wherein the lowest predicted response time is
computed based on at least one of: length of an event queue,
message rate or match rate.

#* #* #* #* #*

